Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Chem ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321236

RESUMO

Nanoporous materials have attracted great attention for gas storage, but achieving high volumetric storage capacity remains a challenge. Here, by using neutron powder diffraction, volumetric gas adsorption, inelastic neutron scattering and first-principles calculations, we investigate a magnesium borohydride framework that has small pores and a partially negatively charged non-flat interior for hydrogen and nitrogen uptake. Hydrogen and nitrogen occupy distinctly different adsorption sites in the pores, with very different limiting capacities of 2.33 H2 and 0.66 N2 per Mg(BH4)2. Molecular hydrogen is packed extremely densely, with about twice the density of liquid hydrogen (144 g H2 per litre of pore volume). We found a penta-dihydrogen cluster where H2 molecules in one position have rotational freedom, whereas H2 molecules in another position have a well-defined orientation and a directional interaction with the framework. This study reveals that densely packed hydrogen can be stabilized in small-pore materials at ambient pressures.

2.
Radiat Res ; 200(5): 421-430, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758050

RESUMO

The ionizing radiation exposure to crew on current and future space missions can significantly increase their health risks for cancers, degenerative diseases, and other acute and late effects. A common approach for estimating risk to crew is by completing stochastic (e.g., Monte Carlo) or deterministic particle transport simulations. Within the simulated environment, a small fraction of the particle histories tracked will interact with the astronaut or detector, particularly for larger spacecraft such as the International Space Station, Tiangong Space Station or Lunar Gateway. These simulations can be computationally intensive as they require a very large number of particle histories to achieve a low statistical uncertainty. Variance reduction techniques are applied to simulations to reduce the computational time of the simulation while maintaining the same (or less) statistical uncertainty. The variance reduction technique developed herein involves applying a directional source bias to an isotropic radiation field, such as galactic cosmic rays, to reduce the quantity of particles that have a low probability of interacting with the astronaut or detector. A custom application has been developed utilizing the Geant4 Toolkit that computes the trajectories and energies of particles in three dimensions in the International Space Station using the Monte Carlo method. The results demonstrate the impact of our variance reduction technique on effective dose equivalence depending on: primary and secondary particle type (proton, neutron, photon, heavy ion, etc.), geometric volumes and spacecraft materials. Our variance reduction technique can be tuned by the user to optimize the simulation time depending on their objectives and enables rapid testing of different shield configurations and materials. This variance reduction technique is implemented easily using several input parameters for boundary conditions. Recommended values are presented for rapid implementation in simulations.


Assuntos
Radiação Cósmica , Astronave , Humanos , Astronautas , Radiação Cósmica/efeitos adversos , Nêutrons , Doses de Radiação
3.
Rev Sci Instrum ; 92(7): 073304, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340461

RESUMO

There are five filter-analyzer neutron spectrometers available worldwide for scientists to use in order to measure the vibrational density of states in various samples. While Taipan, the thermal spectrometer, has been operated as a triple-axis spectrometer at the Australian Centre for Neutron Scattering since 2010, a beryllium filter analyzer spectrometer was added in 2016. Due to the complex nature of the data post-processing, it has thus far been impossible to fully treat experimental data from scientific measurements taken over the last five years. We have successfully created a robust method of treating data from the Taipan filter-analyzer and present the method on three different samples. The data-treatment process includes correction for the non-linear energy variation of a particular monochromator, removal of higher-order wavelength contamination, and estimation of low-energy multiple-scattering. The steps described here can be utilized by all users of the Australian Nuclear Science and Technology Organisation "Be-filter"-past, present, and future.

4.
Eur Phys J Spec Top, v. 227, n. 17, p. 2393-2399, mar. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2718

RESUMO

As a consequence of its ordered pore architecture, mesoporous SBA-15 offers new possibilities for incorporating biological agents. Considering its applicability in oral vaccination, which shows more beneficial features when compared with parenteral vaccines, SBA-15 is also seen as a very promising adjuvant to carry, protect, and deliver entrapped antigens. Recent studies have shown several remarkable features in the immunization of hepatitis B, a viral disease transmitted mainly through blood or serum transfer. However, the surface antigen of the hepatitis B virus, HBsAg, is too large to fit inside the SBA-15 matrix with mean pore diameter around 10 nm, thus raising the question of how SBA-15 can protect the antigen. In this work, thermal analysis combined with neutron spectroscopy allowed us to shed light on the interactions between HBsAg and SBA-15 as well as on the role that these interactions play in the efficiency of this promising oral vaccination method. This information was obtained by verifying how the dynamic behaviour of the antigen is modified under confinement in SBA-15, thus also establishing an experimental method for verifying molecular dynamics simulations.

5.
Eur Phys J Spec Top ; v. 227(n. 17): p. 2393-2399, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15934

RESUMO

As a consequence of its ordered pore architecture, mesoporous SBA-15 offers new possibilities for incorporating biological agents. Considering its applicability in oral vaccination, which shows more beneficial features when compared with parenteral vaccines, SBA-15 is also seen as a very promising adjuvant to carry, protect, and deliver entrapped antigens. Recent studies have shown several remarkable features in the immunization of hepatitis B, a viral disease transmitted mainly through blood or serum transfer. However, the surface antigen of the hepatitis B virus, HBsAg, is too large to fit inside the SBA-15 matrix with mean pore diameter around 10 nm, thus raising the question of how SBA-15 can protect the antigen. In this work, thermal analysis combined with neutron spectroscopy allowed us to shed light on the interactions between HBsAg and SBA-15 as well as on the role that these interactions play in the efficiency of this promising oral vaccination method. This information was obtained by verifying how the dynamic behaviour of the antigen is modified under confinement in SBA-15, thus also establishing an experimental method for verifying molecular dynamics simulations.

6.
J Chem Phys ; 141(3): 034201, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25053313

RESUMO

The leaching of Al from intermetallic samples of Nickel Aluminium alloys to form Raney-type nickel catalysts is widely used in the hydrogenation industry, however, little is known of the leaching process itself. In this study, the leaching of Al was measured in realtime, in situ, using the high-flux powder neutron diffractometer, D20, at the Institut Laue-Langevin. Despite the liberation of hydrogen and effervescent nature of the reaction the transformation of the dry powder phases into Raney-type Ni was determined. Samples produced by gas-atomisation were found to leach faster than those produced using the cast and crushed technique. Regardless of processing route of the precursor powder, the formation of spongy-Ni occurs almost immediately, while Ni2Al3 and NiAl3 continue to transform over longer periods of time. Small-angle scattering and broadening of the diffraction peaks is an evidence for the formation of the smaller Ni particles. Understanding the kinetics of the leaching process will allow industry to refine production of catalysts for optimum manufacturing time while knowledge of leaching dynamics of powders produced by different manufacturing techniques will allow further tailoring of catalytic materials.

7.
J Phys Condens Matter ; 22(31): 316001, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21399371

RESUMO

We have investigated the magnetoelastic effects in MF(2) (M = Mn, Fe, Ni) associated with the antiferromagnetic phase transition temperature T(N) by neutron powder diffraction. The temperature variation of the lattice parameters and the unit cell volume has been determined accurately with small temperature steps. From the temperature variation of the lattice parameters a, c and V the lattice strains Δa, Δc and ΔV associated with the antiferromagnetic phase transition have been extracted. Rietveld refinement of the crystal and magnetic structures from the diffraction data at low temperature gave a magnetic moment of 5.12 ± 0.09 µ(B), 4.05 ± 0.05 µ(B) and 1.99 ± 0.05 µ(B) per Mn, Fe and Ni ions, respectively. The lattice strains Δa, Δc and ΔV couple linearly with the intensity of the 100 magnetic reflection, which is proportional to square of the order parameter of the antiferromagnetic phase transition. The volume strains in MF(2) (M = Mn, Fe, Co, Ni) due to the magnetostriction vary smoothly along the transition metal series and seem to be correlated with the strength of the exchange interaction and the moments of the magnetic ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...